Let z,w be complex numbers such that z+iw=0 and arg zw=π then arg z equals
Given that arg zw=π .....(i) ¯z+i¯w=0⇒¯z=−i¯w⇒ z=iw⇒ w=−iz From (i),arg (−iz2)=π arg(−i)+2arg(z)=π ; −π2+2arg(z)=π 2arg(z)=3π2; arg(z)=3π4
Let z and ω be complex numbers such that ¯z+i¯ω=0 and arg zω=π. Then arg z equals