Let z=x+iy, then find the locus of z for |z+1|2−|z−1|2=4 is
We have,
z=x+iy ……. (1)
Since,
|z+1|2−|z−1|2=4
On putting the value of the z, we get
|x+iy+1|2−|x+iy−1|2=4
|x+1+iy|2−|x−1+iy|2=4
(x+1)2+y2−[(x−1)2+y2]=4
(x+1)2+y2−(x−1)2−y2=4
x2+1+2x−x2−1+2x=4
4x=4
x=1
Hence, this is the answer.