lf 0<a<c, 0<b<c then ∫∞0ax−bxcxdx=
∫∞0(axcx−bxcx)dx =∫∞0(ac)xdx−∫∞0(bc)xdx =(ac)xlog(ac)∫∞0−(bc)xlog(bc)∫∞0 =⎡⎢ ⎢⎣1−1log(ac)⎤⎥ ⎥⎦−⎡⎢ ⎢ ⎢⎣1−1log(bc)⎤⎥ ⎥ ⎥⎦ =1log(bc)−1log(ac)