The correct option is D g(x)=log|x|,h(x)=log|x|
∫(f(x)x2)1/2dx=1√2g(1+√2f(x)1−√2f(x))−√23h(√3f(x)+√2√3f(x)−√2)+C .....(1)
where
Given, f(x)=x+22x+3
Consider, ∫(f(x)x2)1/2dx
=∫(x+22x+3)1/2dxx
Put x+22x+3=y2
⇒x=3y2−21−2y2
⇒dx=−2y(1−2y2)2
So, I=−∫2y2(3y2−2)(1−2y2)dy
=∫2y2(3y2−2)(2y2−1)dy
Now, we will resolve y2(3y2−2)(2y2−1) into partial fractions
Put y2=t
So, t(3t−2)(2t−1)=A(3t−2)+B(2t−1)
⇒t=A(2t−1)+B(3t−2)
On comparing terms, we get
2A+3B=1
−A−2B=0⇒A=−2B
⇒B=−1,A=2
So, t(3t−2)(2t−1)=2(3t−2)−1(2t−1)
or,y2(3y2−2)(2y2−1)=2(3y2−2)−1(2y2−1)
I=4∫dy(3y2−2)−2∫dy(2y2−1)
I=43∫dy(y2−23)−∫dy(y2−12)
I=1√2ln|1+√2y1−√2y|−√23ln|√3y+√2√3y−√2|+C
I=1√2ln|1+√2f(x)1−√2f(x)|−√23ln|√3f(x)+√2√3f(x)−√2|
On comparing with (1), we get
g(x)=log|x|,h(x)=log|x|