lf f(x)=limn→∞n2(x1/n−x1/(n+1)),x>0, then ∫xf(x)dx is equal to
A
x22+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2logx−12x2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x22logx−x24+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx22logx−x24+c f(x)=limn→∞n2(x1/n−x1/(n+1)),x>0 Let m=1n∴asn→∞⇒m→0 ⇒f(x)=limn→0xm−xm/(m+1)m2=limn→0xm/m+1(xm−m/m+1−1)m2 =limn→0xm/m+1(xm2/m+1−1)m2/m+1(m+1)=x0.logx.(0+1)=logx Hence ∫xf(x)dx=∫xlogxdx=logx.x22−∫1xx22dx =x22logx−x24+c