The correct option is A 0
writing asθ=cosθ+isinθ
2(x+iy)+(x+iy)(cosθ+isinθ)=3
⇒(2x+xcosθ−ysinθ)+i(2y+x sinθ+y cosθ)=3
then by comparison,
2x+x cosθ−y sinθ=3 or x cosθ−ysinθ=3−2x −(1)
2y+x sinθ+y cosθ=0 xsinθ+ycosθ=−2y −(2)
By (1) & (2), squaring and adding,
x2(cos2θ+sin2θ)+y2(sin2θ+cos2θ)
−2xcosθ ysinθ+2x cosθ y sinθ=(3−2x)2+(−2y)2
⇒x2+y2=a+4x2−12x+4y2
⇒3x2+3y2−12x+9=0
⇒x2+y2−4x+3=0