wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


lf y=sin(sinx) and d2ydx2+dydxtanx+f(x)=0, then f(x) equals to

A
sin2 xsin (cosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin2xcos(cosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos2x(sin(cosx))
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos2 xsin(sinx)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D cos2 xsin(sinx)
Given, y=sin(sinx)

dydx=cos(sinx)cos(x)

d2ydx2=sin(sinx)cos2xcos(sinx)sinx

Also given, d2ydx2+dydxtanx+f(x)=0

Therefore, sin(sinx)cos2xcos(sinx)sinx+cos(sinx)cosx×sinxcosx+f(x)=0

sin(sinx)cos3xcos(sinx)sinx.cosx+cos(sinx)sinx.cosx+f(x)cosx=0

sin(sinx)cos2xcos(sinx)sinx+cos(sinx)sinx+f(x)=0

f(x)=sin(sinx)cos2x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon