The correct option is A secx(xtanx+1)
limy → 0{xsec(x+y)−sec xy+sec(x+y)}
limy → 0[xy{cos x−cos(x+y)cos(x+y)cos x}]+limy → 0sec(x+y)
limy → 0⎡⎢
⎢
⎢
⎢⎣x 2sin(x+y2) sin(y2)y cos(x+y)cos x⎤⎥
⎥
⎥
⎥⎦+sec x
limy → 0⎡⎢
⎢
⎢
⎢⎣x sin(x+y2)cos(x+y)cos x×siny2y2⎤⎥
⎥
⎥
⎥⎦+sec x
=x tan x sec x+sec x
=sec x (x tan x+1)