The correct option is B 13 loge 2
Let S=limπ→∞ 113+n3+423+n3+⋯+12n
=limπ→∞ 113+n3+423+n3+⋯+n2n3+n3
∴ S=limπ→∞∑nr=1r2r3+n3=limπ→∞r2n3(r3n3+1)
=limπ→∞∑nr=1 1n.(rn)2[1+(rn)3]
Applying the formula, we get A=∫10 x21+x3dx
=13∫10 3x21+x3dx=13[loge(1+x3)]10=13loge2