limn→∞[11−n2+21−n2+⋯+n1−n2] is equal to
0
−12
12
None of these
limn→∞[11−n2+21−n2+⋯+n1−n2] =limn→∞(11−n2)[1+2+3⋯n] =limn→∞(11−n2)[n(n+1)2] =limn→∞12[n(n+1)(1−n)(1+n)] =limn→∞12n1−n =limn→∞1211n−1 =12(−1) =−12
The value of limn→∞[n1+n2+n4+n2+n9+n2+⋯+12n] is equal to [Bihar CEE 1994]