limx→01−cos2x+tan2xxsinx
=limx→02sin2x+tan2xxsinx
=2limx→0sin2x+limx→0tan2xlimx→0xsinx=(2(limx→0sinxx)2×x2)+(limx→0tanxx)2×x2limx→0sinxx×x2
=(2×1×x2)+(1×x2)(1×x2) [∵limx→0sinxx=1 andlimx→0tanxx=1]
=3x2x2=3
limx→01−cos2xcos2x−cos8x
limx→01−cos2x3tan2x