limx→0e2x−exsin 2x
=limx→0(e2x−1)−(ex−1)sin 2x
=limx→0e2x−1sin 2x−limx→0ex−1sin 2x
=(limx→0e2x−12x×limx→02xsin 2x)×12
=(limx→0e2x−1x×limx→02xsin 2x)
=1−12=12
Find the value of limx→0e2x+e−2x−2ex−x−x