limx→0sec5x−sec3xsec3x−secx
limx→0sec5x−sec3xsec3x−secx=limx→01cos5x−1cos3x1cos3x−1cosx
=limx→0(cos3x−cos5xcos3xcos5xcosx−cos3xcosxcos3x)=limx→0(cos3x−cos5xcosx−cos3x×cosxcos3xcos3xcos5x)
[Applying Componendo and dividendo formula]
=limx→0(−2sin4xsin(−x)−2sin(2x)sin(−x)×cosxcos5x)=limx→0(sin4xsin2x×cosxcos5x)
=limx→0sin4x×limx→0cosxlimx→0sin2x×limx→0cos5x=(lim4x→0sin4x4x×4xlim2x→0sin2x2x×2x)×(limx→0cosxlimx→0cos5x)
=(1×4x)×11×2x×1 [∵limx→0sinxx=1 andlimx→0cosx=cos0=1]
=4x2x=2