limx→0tan2x−sin2xx3
limx→0tan2x−sin2xx3
=limx→0sin2xcos2x−sin2xx3=limx→0sin2x(1cos2x−1)x3=limx→0sin2x(1−cos2x)x3cos2x=limx→0sin2x(2sin2x)x3cos2x
=(limx→0sin2xx)(limx→02sin2xx2)(limx→0cos2x)=(limx→0sin2x2x×2)(2limx→0(sinxx)2)limx→0cos2x=(2×1)(2×1)1=4