limx→1√3+x−√5−xx2−1
limx→1√3+x−√5−xx2−1
Rationalising the numenator
=limx→1(√3+x−√5−x)(x2−1)×(√3+x−√5−x)(√3+x+√5−x)
=limx→1(3+x)−(5−x)(x−1)(x+1)(√3+x+√5−x)
=limx→1−2+2x(x−1)(x+1)(√3+x+√5−x)
=limx→12(x+1)(√3=x+√5−x)
=2(1+1)(√3+1+√5−1)=2(2)(2+2)
=14