limx→1√3+x−√5−xx2−1
limx→1√3+x−√5−xx2−1 [It is of (00) form]
Rationalising the numerator
=limx→1(√3+x−√5−x)(x−1)(x+1)×(√3+x+√5−x)(√3+x+√5−x)
=limx→1{3+x−(5−x)}(x−1)(x+1)(√3+x+√5−x)
=limx→1−2+2x(x−1)(x+1)(√3+x+√5−x)
=limx→1−2(x−1)(x−1)(x+1)(√3+x+√5−x)(00)
=limx→1−2(1+1)(√3+1+√5−x)
=2(1+1)(√3+1+√5−x)
=2(2)(2+2)=14