limx→−1x2−x−2(x2+x)+sin(x+1)
limx→−1x2−x−2(x2+x)+sin(x+1)
=limx→−1(x−2)(x+1)x(x+1)+sin(x+1)
=limx→−1(x−2)x(x+1)(x+1)+sin(x+1)(x+1)
Dividing numerator and denominator by (x + 1)
=limx→−1(x−2)x+sin(x+1)(x+1)
=limx→−1((x−2)x+sin(x+1)x+1)
=limx→−1(x−2)limx→−1(x)+limx+1→0sinx+1x+1
=(−1−2)(−1)+1 [∵lim0→0sin θθ=1]
=10 [∵10=∞]
=∞