limx→2√1+4x−√5x+2xx−2
limx→2√1+4x−√5x+2xx−2
Rationalising the numenator
limx→2(√1+4x−√5+2x)(x−2)×(√1+4x+√5+2x)(√1+4x+√5+2x)
=limx→2(1+4x)−(5+2x)(x−2)(√1+4x+√5+2x)
=limx→2−4+2x(x−2)(√1+4x+√5+2x)
=limx→22(x−2)(x−2)(√1+4x+√5+2x)
=2√1+8+√5+4=2√9+√9
=26=13