limx→2√x2+1−√5x−2
Rationalising the numenator
=limx→2√x2+1−√5(x−2)×(√x2+1+√5)(√x2+1+√5)
=limx→2(x2+1−5)(x−2)(√x2+1+√5)
=limx→2(x+2)(x−2)(x−2)(√x2+1+√5)
=limx→2(x+2)(√x2+1+√5)
=(2+2)√4+1+√5
=42√5=2√5
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx