limx→2(1x−2−2x2−2x)
=limx→2(1x−2−2x(x−2))
[limx→21(x−2)(11−2x)]
=limx→2(x−2(x−2)(x)) [It is of (00) form]
=limx→21x
=12
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
Let f(x) = x2-1, 0 0<x<2 and 2x+3, 2≤x<3, The quadratic equation whose roots are limx→2−f(x),and limx→2+f(x)