limx→2(xx−2−4x2−2x)
limx→2(xx−4−4x2−2x)
=limx→2(xx−2−4x(x−2))
=limx→21x−2(x1−4x)
=limx→21x−2(x2−4x)
=limx→2((x−2)(x+2)x(x−2))
=limx→2(x+2)x
=2+22
=42=2
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
limx→√2x2−2x2+√2x−4
limx→2(1x−2−2x2−2x)