limx→π21−sin x(π2−x)2
Let x=π2+y
⇒y=x−π2
as x→π2,y→0
=limy→01−sin(π2−y)y2
=limy→01−cos yy2=limy→02 sin2y2y2
=2(limy→0siny2y2)2×14[∵limy→0sin xx=1]
=2×1×14=12
limx→π2√2−sin x−1(π2−x)2