limx→π2√2−sin x−1(π2−x)2
limx→π2√2−sin x−1(π2−x)2
⇒x→π2, then x−π2→0,x−π2=y,⇒y→0
=limy→0√2−sin(π2−y)−1y2
=limy→0√2−cos y−1y2=limy→0(√2−cos y−1)y2×(√2−cos y+1)(√2−cos y+1)
=limy→0(2−cos y−1)(√2−cos y+1)=limy→01−cos y(√2−cos y+1)y2
=limy→02 sin2y2(√2−cos y+1)=2×(limy→0siny2y2)2×14×1limy→0√2−cos y+1
=2×1×14×11+1=14