limx→π41−sin2x1+cos4x
limx→π41−sin2x1+cos4x
⇒x→π4,x−π4→0. let x−π4=y
⇒y→0
⇒limx→π41−sin2x1+cos4x=limy→0(1−sin2(y+π4))1+cos4(y+π4)
=limy→0(1−sin(π2+2y)1+cos(π+4y))
=limx→π4→01−cos2y1−cos4y
=limy→02sin2y2sin22y
=limy→0sin2ylimy→0sin22y
=(limy→0sin yy)2×y2(limy→0sin 2y2y)2×4y2
=11×4 [∵lim0→0sin θθ=1]
=14