wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ42cos xsin x(4xπ)2

Open in App
Solution

limxπ42cos xsin x(4xπ)2

xπ4, then xπ40, let xπ4=yy0

=limy02cos(y+π4)sin x(y+π4)[4(π4+y)π]2

=limy02(cos y cosπ4sin y sinπ4)(sin y cosπ4+cos sinπ4)y2

=116limy02⎜ ⎜cos y×12sin y+12⎟ ⎟(sin y2+cos y2)y2

=116limy0212(cos ysin y)12(sin y+cos y)y2

=116limy0212[(cos ysin y)(sin y+cos y)]y2

=116limy0(212cos y+12sin y12sin y12cos y)y2

=116limy02+22cos yy2==116limy02(1cos y)y2

=216limy02sin2y2y2=28limy0(siny2y2)2×14=1162


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon