limx→π4√2−cos x−sin x(4x−π)2
limx→π4√2−cos x−sin x(4x−π)2
⇒x→π4, then x−π4→0, let x−π4=y⇒y→0
=limy→0√2−cos(y+π4)−sin x(y+π4)[4(π4+y)−π]2
=limy→0√2−(cos y cosπ4−sin y sinπ4)−(sin y cosπ4+cos sinπ4)y2
=116limy→0√2⎛⎜ ⎜⎝cos y×1√2−sin y+1√2⎞⎟ ⎟⎠−(sin y√2+cos y√2)y2
=116limy→0√2−1√2(cos y−sin y)−1√2(sin y+cos y)y2
=116limy→0√2−1√2[(cos y−sin y)−(sin y+cos y)]y2
=116limy→0(√2−1√2cos y+1√2sin y−1√2sin y−1√2cos y)y2
=116limy→0√2+2√2cos yy2==116limy→0√2(1−cos y)y2
=√216limy→02sin2y2y2=√28limy→0(siny2y2)2×14=116√2