limx→π4√2−cos x−sin x(π4−x)2
limx→π4√2−cos x−sin x(π4−x)2
Let x=π4+h⇒h=x−π4
as x−π4,h→0
=limh→0√2−cos(π4+4)−sin(π4+4)(−4)2
=limh→0√2−(cosπ4cos h−sinπ4sin h)−(sinπ4cos h+cosπ4sin h)h2
=limh→0√2−(cos h√2−sin h√2)−(cos h√2+sin h√2)h2
=limh→0√2−cos h√2+sin h√2−cos h√2−sin h√2h2=limh→0√2−√2cos hh2
=limh→0√2−(1−cos h)h2=limh→0√2(2 sin2h2)h2
=limh→02√2(sinh2h2)214=2√2(1)2×14=1√2