wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ42cos xsin x(π4x)2

Open in App
Solution

limxπ42cos xsin x(π4x)2

Let x=π4+hh=xπ4

as xπ4,h0

=limh02cos(π4+4)sin(π4+4)(4)2

=limh02(cosπ4cos hsinπ4sin h)(sinπ4cos h+cosπ4sin h)h2

=limh02(cos h2sin h2)(cos h2+sin h2)h2

=limh02cos h2+sin h2cos h2sin h2h2=limh022cos hh2

=limh02(1cos h)h2=limh02(2 sin2h2)h2

=limh022(sinh2h2)214=22(1)2×14=12


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon