limx→08sinx+xcosx3tanx+x2=
3
2
-1
4
Explanation for the correct option:
Expanding the given equation and applying the limits:
limx→08sinx+xcosx3tanx+x2ApplyingL'hospital'sRulelimx→c(f(x)g(x))=limx→c(f'(x)g'(x))=limx→08sinx+cosx+x(-sinx)3sec2x+2xd(cosx)dx=-sinxandd(3tanx+x2)dx=3sec2x+2x
Applying the limits,
=8sin0+cos0+0(-sin0)3sec20+2(0)=8+1+03(1)+0=93=3
Thus, limx→08sinx+xcosx3tanx+x2=3
Therefore, the correct answer is option (A).