Locate the complex numbers z=x+iy such that |z−1|+|z+1|≤4 Show that the point z satisfying the above equation represents the interior and boundary ellipse x24+y23=1.
Open in App
Solution
√(x−1)2+y2+√(x+1)2+y2≤4 Consider L+M=4 L2−M2=−4x∴L−M=−x ∴2L=4−x or 4L2=(4−x)2 or 4[x2+y2−2x+1]=16+x2−8x 3x2+4y2=12. Hence the given equation is x24+y23−1≤0 or S′≤0 ......(1) x24+y23−1.