Element A:
λ=sin(X−Y)sinZ=sinXcosY−sinYcosXsinZ
Using sine and cosine law,
λ=a⋅a2+c2−b22ac−b⋅b2+c2−a22bcc=a2−b2c2=12
∴cos(nπλ)=cos(nπ2)=0 only when n is an odd integer.
So, 1,3,5
Element B:
1+cos2X−2cos2Y=2sinXsinY
Using cos2a=1−2sin2a and sine law
1+1−2sin2X−2(1−2sin2Y)=2sinXsinY
⇒2sin2Y−sin2X=sinXsinY
⇒2sinYsinX−sinXsinY=1
At solving, we get sinXsinY=1
∴sinXsinY=ab=1
Element C:
→OX:√3^i+^j
→OY:^i+√3^j
→OZ:β^i+(1−β)^j
Bisector of acute angle between →OX and →OY is →OP:^i+^j
So, distance of point (β,1−β) from line x=y is
∣∣∣2β−1√2∣∣∣=3√3
2β=1±3⇒|β|=4 or 2.
Element D:
Case 1: α=0
Area bounded by x=0,x=2,y2=4x and y=3 is
F(0)=3×2−∫202√x=6−8√23
Case 2: α=1
Area bounded by x=0,x=2,y2=4x
y=⎧⎨⎩3(x−1);x≥2x+1;1≤x<23−x;x<1 is
F(1)=4+2×12−∫202√x=5−8√23
∴F(0)+8√23=6 and F(1)+8√23=5