wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the following by appropriately matching the lists based on the information given in Column I and Column II.

Column IColumn II (TypeofABC)a.cotA2=b+ca p. always right angled b. atanA+btanB=(a+b)tanA+B2 q. always isosceles c. acosA=bcosB r. may be right angled d. cosA=sinB2sinC s. may be right angled isosceles

A
ap,q; bq,r; cp,s; dq,r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ap,q; bq,s; cp,s; dq,s
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ap,s; bq,r; cp,s; dq,r
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ap,s; bq,r,s; cr,s; dq,r,s
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D ap,s; bq,r,s; cr,s; dq,r,s
cotA2=b+cacos(A/2)sin(A/2)=sinB+sinCsinAcos(A/2)sin(A/2)=2sinB+C2cosBC22sinA2cosA2cosA2=cosBC2A=BC A+C=BA+B+C=2B=π B=π2
So, its a right angled triangle

B.atanA+btanB=(a+b)tanA+B2
It can be written as
a[tanAtan12(A+B)]=b[tan12(A+B)tanB]
asin(AA+B2)cosAcosA+B2=bsin(A+B2B)cosA+B2cosB2RsinAsinAB2cosA=2RsinBsinAB2cosBsinAB2×(tanAtanB)=0A=B
hence triangle is an isosceles triangle and can be right angled.

C.
acosA=bcosB2RsinAcosA=2RsinBcosBsin2A=sin2BA=B or A+B=π2
Hence triangle is isosceles or right angled.

D.
cosA=sinB2sinCb2+c2a22bc=b2cb2+c2a2=b2c2=a2,c=a
Hence the triangle is isosceles


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solution of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon