The correct option is A A - 5, B - 1, C - 4, D - 2
A) f(x)=x2−2x+5
⇒f′(x)=2x−2
For f(x) to be increasing f'(x)>0
⇒x>1
⇒x∈(1,∞)
B) f(x)=e−x
⇒f′(x)=−e−x
For f(x) to be increasing f'(x)>0
⇒−e−x>0
⇒e−x<0
There is no value of x satisfying the above inequality.
C)f(x)=logex
Clearly , f(x) is defined for x>0
⇒f′(x)=1x
For f(x) to be increasing f'(x)>0
⇒1x>0
⇒x>0
⇒x∈(0,∞)
D) f(x)=x33−3x22+2x+5
⇒f′(x)=x2−3x+2
For f(x) to be increasing f'(x)>0
⇒(x−2)(x−1)>0
⇒x∈(−∞,1)∪(2,∞)