1) Given equation is −3x2+5x+12=0
On comparing with ax2+bx+c=0, we get
a=-3, b=5 and c=12
By quadratic formula,
x=−b±√b2−4ac2a
=−(5)±√(5)2−4(−3)(12)2(−3)=−5±√25+144−6=−5±√169−6=−5±13−6=8−6,−18−6=−43,3
So, −43 and 3 are two roots of the given equation.
2) From the given quadratic equation,
a = 3, b = -5, c = -2
Using the quadratic formula,
x=−b±√b2−4ac2a
x=−(−5)±√(−5)2−4(3)(−2)2(3)
x=5±√25+246
x=5±76
x=5+76,5−76
x=126,−26
x=2,−13
3) (x−2)2=0
so, x-2=0, x-2=0
or x=2, 2