Match the statements of Column I with values of Column II
Column IColumn II(A) ∫e2x−2exe2x+1dx=A ln(e2x+1)+B tan−1(ex)+c(p) A=−12, B=−14(B) ∫√x+√x2+2dx=A{x+√x2+2}32+B√x+√x2+2+c(q) A=12, B=−2(C) ∫cos 8x−cos 7x1+2 cos 5xdx=A sin 3x+B sin 2x+c(r) A=13, B=−2(D) ∫ln xx3dx=Aln xx2+Bx2+c(s) A=13, B=−12
A-q , B-r , C-s , D-p
(A) ∫e2xe2x+1dx−2∫exe2x+1dx=12 ln(1+e2x)−2 tan−1(ex)+c
(B) x+√x2+2=t
⇒x2+2=t2+x2−2tx
⇒x=12(t−2t)
So, I=12∫t12(1+2t2)dt
I=12∫t12dt+∫t−32dt=13t32−2√t+c
(C) ∫cos 8x−cos 7x1+2 cos 5xdx
=∫−2 sin 5x2 sin x2(3−2+2 cos 5x)dx1+2 cos 5x [∵sin 3(5x2)=3 sin 5x2−4 sin3 5x2]
=∫(cos 3x−cos 2x)dx=sin 3x3−sin 2x2+c
(D) ∫ln xx3dx=(ln x)(−12x2)+∫1x.12x2dx
=(−12)ln xx2+(−14)1x2+c