The correct option is
B −πlimx→0sin(πcos2x)x2=sin(πcos2(0))0=sin(π)0=00(indeterminate form)
According to L'Hospital's rule:
Suppose that we have the following cases
limx→af(x)g(x)=00
where a can be any real number, infinity or negative infinity. In these cases we have,
limx→af(x)g(x)=limx→af′(x)g′(x) where, f′(x) is derivative of f(x) with respect to x
Hence, in given question we can apply
L'Hospital's rule.Here,
f(x)=sin(πcos2x) and g(x)=x2
and
f′(x)=cos(πcos2x)(−2πcosxsinx)
or
f′(x)=−πsin(2x)cos(πcos2x)∵2sinxcosx=sin(2x)
and
g′(x)=2x
Now,
limx→0sin(πcos2x)x2=limx→0−πsin(2x)cos(πcos2x)2x=−πlimx→0(sin2x2x)limx→0(cos(πcos2x))
limx→0sin(πcos2x)x2=−πlimx→0cos(πcos2x)∵limt→0sintt=1
limx→0sin(πcos2x)x2=−πcos(πcos20)
limx→0sin(πcos2x)x2=−πcos(π)∵cos0=1
limx→0sin(πcos2x)x2=π∵cosπ=−1