The correct option is
B 132limx→π2 ⎛⎜
⎜⎝1−tanx21+tanx2⎞⎟
⎟⎠(1−sinx(π−2x)3) = limx→π2 (tanπ/4−tanx/21+tanπ/4.tanx/2)⎛⎜
⎜
⎜
⎜⎝1−cos(π2−x)(π−2x)3⎞⎟
⎟
⎟
⎟⎠
We know that, (tanπ/4=1) & (cos(π/2−θ)=sinθ)
tanA−tanB1+tanA.tanB=tanA−tanB
and 1−cos2θ=2sin2θ
Using the above identities we can further reduce
=limx→π/2 tan(π4−x2)×2sin2(π/4−x/2)(4(π4−x2))3
=limx→π/2 tan(π/4−x/2)64(π/4−x/2)×2sin2(π/4−x/2)(π/4−x/2)2
=132limx→π/2 tan(π/4−x/2)(π/4−x/2)×sin2(π/4−x/2)(π/4−x/2)
Again, We know that,
limθ→0 tanθθ=0 and limθ→0 sinθθ=0
Also limθ→0 sinnθθn=0
Using these we can evaluate the limit to be
=132×1×1
=132