The correct option is D 1
Forlimx→∞x[logx+1−logx]=limx→∞x[logx+1x]=limx→∞[log(1+1x)]1x⇒Asx→∞,1/x→0Therefore,limx→∞[log(1+1x)]1x=limx→0[log(1+x)]x(Replacing1/xbyx)Now,limx→0[log(1+x)]x=00NowusingL′hospital′srule,⇒limx→0[log(1+x)]x=limx→0d([log(1+x)])/dxdx/dx=limx→011+x1=11=1