u=xy2tan−1(yx)
∂u∂x=y2tan−1(yx)+xy21√1+(y2x2)(−yx2) ∂u∂x=y2tan−1(yx)−y3√x2+y2 ..... (i) ∂u∂y=2xytan−1(yx)+xy2√1+y2x2(1x) ∂u∂y=2xytan−1(yx)+xy2√x2+y2 ..... (ii)
x∂u∂x+y∂u∂y=xy2tan−1(yx)+2xy2tan−1(yx) =3xy2tan−1(yx) =3u