1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Infinite GP
Minimise and ...
Question
Minimise and maximise
z
=
5
x
+
2
y
subject to the following constraints :
x
−
2
y
≤
2
3
x
+
2
y
≤
12
−
3
x
+
2
y
≤
3
x
≥
0
,
y
≥
0
Open in App
Solution
The subject of constraints is :
x
−
2
y
≤
2
.
.
.
(
i
)
3
x
+
2
y
≤
12
.
.
.
(
i
i
)
−
3
x
+
2
y
≤
3
.
.
.
(
i
i
i
)
x
≥
0
,
y
≥
0
.
.
.
(
i
v
)
On solving (i), we have
A
(
0
,
−
1
)
,
B
(
2
,
0
)
On solving (ii), we have
C
(
0
,
6
)
,
D
(
4
,
0
)
On solving (iii), we have
E
(
−
1
,
0
)
,
F
(
1
,
3
)
It is observed that the feasible region OBGHJ is bounded.
Thus, we use corner point method to determine the maximum and minimum value of z, where
z
=
5
x
+
2
y
Corner Point
Corresponding value of z
B
(
2
,
0
)
10
G
(
7
2
,
3
4
)
19
H
(
3
2
,
15
4
)
15
J
(
0
,
3
2
)
3
Hence,
z
m
a
x
=
19
at the point
G
(
7
2
,
3
4
)
and
z
m
i
n
=
3
at the point
J
(
0
,
3
2
)
Suggest Corrections
0
Similar questions
Q.
Minimum and maximum
z
=
5
x
+
2
y
subject to the following constraints:
x
−
2
y
≤
2
3
x
+
2
y
≤
12
−
3
x
+
2
y
≤
3
x
≥
0
,
y
≥
0
Q.
If
z
=
5
x
+
2
y
subject to the following constraints :
x
−
2
y
≤
2
,
3
x
+
2
y
≤
12
,
−
3
x
+
2
y
≤
3
,
x
≥
0
,
y
≥
0
,
then which of the following is/are true?
Q.
Minimise
Z
=
3
x
+
2
y
subject to constraints:
x
+
y
≥
8
3
x
+
5
y
≤
15
x
≥
0
,
y
≥
0
Q.
Minimise and Maximise Z = 5
x
+ 10
y
subject to
.