wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the statements given in Column I with the intervals/union of intervals given in Column II

Column I Column II
(A) The set {Re(2/z1z2); z is a complex number,f|z|=1,z±1} is (p) (,1)(1,)
(B) The domain of the function f(x)=sin1(8(3)x2132(x1)) is (q) ,0(0,)
(C) If f(θ)=∣ ∣1tanθ1tanθ1tanθ1tanθ1∣ ∣ then the set {f(θ):0θ<π2} is (r) [2,)
(D) If f(x)=x32(3x10), x0, then f(x) is increasing in (s) (,1][1,)
(t) (,0][2,)

A
A(s),B(t),C(r),D(r)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A A(s),B(t),C(r),D(r)
(A) We have |z|=1 and z±1
z=cosθ+isinθ
2z1z2=2(cosθ+isinθ)1(cosθ+isinθ)2

=2(cosθ+isinθ)1cos2θisin2θ

=1isinθ(cosθ+isinθcosθ+isinθ)

=1isinθ=isinθ

Re(i2z1z2)=1sinθ=cosec θ

Dr=(,1][1,)

(B) For the domain of the given function
18.3x2132(x1)1

|8.3x2||132(x1)|

8.3x9132x9,32x9<1

8a9a2, a=3x

9a1

3x30

x0

(C) We have
f(θ)=∣ ∣1tanθ1tanθ1tanθ1tanθ1∣ ∣

=(1+tan2θ)tanθ(tanθ+tanθ)+1(tan2θ+1)

=2(1+tan2θ)=2sec2θ
Dr=[2,)

(D) We have
f(x)=x32(3x10)

f(x)=32x12(3x10)+3.x32

=3x122(3x10+2x)

=152x12(x2)

Since f(x) is increasing, hence,
f(x)0
x2 as x0
Dr is [2,)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon