We have,
(1+i√2)8n+(1−i√2)8n
⎡⎣(1+i√2)2⎤⎦4n+⎡⎣(1−i√2)2⎤⎦4n
=[12+i2+2i2]4n+[12+i2−2i2]4n
=[1−1+2i2]4n+[1−1−2i2]4n
=(i4)n+((−i)4)n
=1n+1n
=1+1
=2