wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Neon gas is generally used in the sign boards. If it emits strongly at 616 nm, calculate (a) the frequency of emission, (b) distance traveled by this radiation in 30 s (c) energy of quantum and (d) number of quanta present if it produces 2 J of energy.

Open in App
Solution

Wavelength of radiation emitted = 616 nm = 616 × 10–9 m (Given)

(a) Frequency of emission

Where,

c = velocity of radiation

λ = wavelength of radiation

Substituting the values in the given expression of:

= 4.87 × 108 × 109 × 10–3 s–1

ν = 4.87 × 1014 s–1

Frequency of emission (ν) = 4.87 × 1014 s–1

(b) Velocity of radiation, (c) = 3.0 × 108 ms–1

Distance travelled by this radiation in 30 s

= (3.0 × 108 ms–1) (30 s)

= 9.0 × 109 m

(c) Energy of quantum (E) = hν

(6.626 × 10–34 Js) (4.87 × 1014 s–1)

Energy of quantum (E) = 32.27 × 10–20 J

(d) Energy of one photon (quantum) = 32.27 × 10–20 J

Therefore, 32.27 × 10–20 J of energy is present in 1 quantum.

Number of quanta in 2 J of energy

= 6.19 ×1018

= 6.2 ×1018


flag
Suggest Corrections
thumbs-up
1
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Photoelectric Effect
CHEMISTRY
Watch in App
Join BYJU'S Learning Program
CrossIcon