f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩cosx+cos−11−logex;0<x≤1cosx+cos−1(1)+logex;1<x≤π/2−cosx+cos−1(1)+logex;π/2<x≤3π/2cosx+cos−1(1)+logex;3π/2<x≤2π
at x=1
limx→1−f(x)=cos1+cos−11−0
limx→1+f(x)=cos1+cos−11+0
LHL=RHL ⇒continuous
at x=π/2
limx→π/2−f(x)=cosπ/2+cos−1(1)+logeπ/2
=cos−1(1)+logeπ/2
limx→π/2+f(x)=−cosπ/2+cos−1(1)+logeπ/2
=cos−1(1)+logeπ/2
LHL=RHL ⇒continuous
Similarly it is continuous at x=3π/2
⇒f(x) is continuous over the interval (0,2π)
f′(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩−sinx−1/x;0<x≤1−sinx+1/x;1<x≤π/2sinx+1/x;π/2<x≤3π/2−sinx+1/x;3π/2<x≤2π
at x=0
limx→1−f′(x)=−sin1−1
limx→1+f′(x)=−sin1+1
LHL≠RHL ⇒Non differentiable
at x=π/2
limx→π/2−f′(x)=−1+2/π
limx→π/2+f′(x)=1+2/π
LHL≠RHL ⇒Non differentiable
atx=π/2
limx→3π/2−f′(x)=−1+2/3π
limx→3π/2+f′(x)=1+2/3π
⇒Non differentiable
∴f(x) is non differentiable at 3 points.