The correct option is D 3
tanx+secx=2cosx
⇒sinx+1=2cos2x⇒sinx+1=2−2sin2x
⇒2sin2x+sinx−1=0
⇒(2sinx−1)(sinx+1)=0
but sinx=−1⇒x=3π2 ...........(1)
sinx=12=sinπ6
therefore general solution is,
x=nπ+(−1)n.π6
x=......,π6,5π6,...... ..........(2)
Therefore, number of solutions in the given interval are 3.
Hence, option 'D' is correct.