(a) 60 cm2
Given,OQ=OR=5cm,OP=13 cm.
∠OQP=∠ORP=900
(Tangents drawn from an external point are perpendicular to the radius at the point of contact)
From right-angled
ΔPOQ:PQ2=OP2−OQ2
⇒PQ2=132−52
⇒PQ2=144
⇒PQ=12cm
∴Area of △OQP=12×PQ×OQ
=12×12×5 cm2
=30 cm2
Similarly, Area of△ORP=30 cm2
∴arquad. PQOR=30+30 cm2=60 cm2