O is the centre of the circle of radius 5 cm, OP is perpendicular to AB, OQ is perpendicular to CD, AB||CD, AB=6 cm and CD=8 cm. Determine PQ.
1 cm
Given: A circle with centre O, such that chord AB=6 cm, chord CD=8 cm
AB∥CD and radius of the circle =5 cm
OP⊥AB and OQ⊥CD
To find: PQ
Construction: Join OA and OC
AP=PB=AB2=3 cm,
CQ=QD=CD2=4 cm
[Perpendicular from the centre of the circle bisects the chord]
In right triangle △OPA,
OA2=OP2+AP2 [Pythagoras Theorem]
⇒52=OP2+32
⇒OP2=52−32
⇒OP2=16
⇒OP=4 cm
In right △OQC,
OC2=OQ2+CQ2 [Pythagoras Theorem]
52=OQ2+42
⇒OQ2=52−42
⇒OQ2=25–16
⇒OQ=3 cm
PQ=OP–OQ=4–3=1 cm