OABC is a rhombus whose three vertices A,B and C lie on a circle with centre O. If the radius of the circle is 10 cm. Find the area of the rhombus.
A
25√3 sq. cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
50√3 sq. cm.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
75√3 sq. cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20√3 sq. cm.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B50√3 sq. cm. Since OABC is a rhombus OA=AB=BC=OC=10cm. Now, OD⊥BC⇒CD=12BC=12(10)=5 cm By pyhthagoras theorem, OC2=OD2+DC2 ⇒OD2=OC2−DC2=(10)2−(5)2=100−25=75 ⇒OD=√75=5√3 Therefore, area (ΔABC)=12BC×OD=12(10)×5√3=25√3 sq.cm So, area of rhombus =2(Area of ΔOABC) =2(25√3)=50√3 sq. cm