The correct option is
A [1+(y′)2]y′′−3y′(y′′)2=0Given:
x2+y2+2gx+2fy+c=0→(1)
We will have to eliminate the constant g,f abd c.
So we will have to differentiate the equation thrice.
Differentiate (1) equation w.r.t ′x′
2x+2yy′+2g+2fy′=0
Differentiate w.r.t ′x′
2+2(yy′′+y′y′)+2fy′′=0
1+yy′′+(y′)2+fy′′=0→(2)
Differentiate w.r.t ′x′
0+yy′′′+y′′y′+2y′y′′+fy′′′=0
y′′′(y+f)+3y′′y′=0→(3)
putting the value of ′f′ from equation (2) in equation (3)
From equation (2) f=−1y′′(1+yy′′+((y′)2))
y′′′(y−1y′′(1+yy′′+((y′)2)))+3y′y′′=0
y′′′⎛⎝yy′′−1−yy′′−(y′)2y′′⎞⎠+3y′y′′=0
−y′′′y′′(1+(y′)2)+3y′y′′=0
−y′′′(1+(y′)2)+3y′(y′′)2y′′=0
−y′′′(1+(y′)2)+3y′(y′′)2=0
y′′′(1+(y′)2)−3y′(y′′)2=0
Hence this is a differential equation of family of circle.
Therefore option ′A′ is correct