On the Argand plane z1,z2 and z3 are respectively, the vertices of an isosceles triangle ABC with AC=BC and equal angles are θ. If z4 is the incentre of the triangle, then (z2−z1)(z3−z1)(z4−z1)2=
A
1+cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1+secθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tanθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1+secθ z2−z1|z2−z1|=(z4−z1)|z4−z1|e−iθ/2(clockwise) z3−z1|z3−z1|=(z4−z1)|z4−z1|eiθ/2(anticlockwise)
Multiplying (1) and (2), we get (z2−z1)(z3−z1)(z4−z1)2=|z2−z1||z3−z1||z4−z1|2 =(AB)(AC)(AI)2=2(AD)(AC)(AI)2 =2(AD)2(AI)2ACAD=2cos2θ2secθ[∵∠ADC=90°]=(1+cosθ)secθ=1+secθ