x=3+√6i
⇒x−3=√6i
squaring both sides, we get
⇒(x−3)2=(√6i)2
⇒x2−6x+9=6i2=−6 where i2=−1
⇒x2−6x+9+6=0
⇒x2−6x+15=0 .........(1)
From the question
4x4−24x3+57x2+18x−45=0
⇒4x4−24x3+(56x2+x2)+(−6x+24x)+(15−60)=0
⇒4x4−24x3+56x2+24x−60+(x2−6x+15)=0 from (1)
⇒4x4−24x3+56x2+24x−60+0=0 from (1)
⇒4x4−24x3+56x2+24x−60=0
⇒x4−6x3+16x2+6x−15=0 by dividing the complete equation by 4
⇒x4−6x3+(13x2+x2)+(12x−6x)+(15−30)=0
⇒x4−6x3+13x2+12x−30+(x2−6x+15)=0 from (1)
⇒x4−6x3+13x2+12x−30=0
⇒x2(x2−6x+13)+12x−30=0
⇒x2(x2−6x+15−2)+12x−30=0
⇒x2(x2−6x+15)−2x2+12x−30=0
⇒x2×0−2x2+12x−30=0 from (1)
⇒−2x2+12x−30=0
⇒x2−6x+15=0 by dividing by −2
⇒Discriminant=b2−4ac=62−4×1×15=36−60=−24<0
∴ there are no real roots.