One of the values of (1+i)223 is
3+i
-i
i
-3+i
Explanation for correct option:
Simplification of complex number:
We have been given (1+i)223
On simplifying, we get:
z=(1+i)223=12+i223=cosπ4+isinπ423[∵sinπ4=12,cosπ4=12]=cos8k+1π6+isin8k+1π6[∵rcosθ+isinθ]n=rn(cosnθ+isinnθ)
Substitute k=1, we get
z=cos8+1π6+isin8+1π6=cos9π6+isin9π6=cos3π2+isin3π2[∵cos3π2=0,sin3π2=-1]=-i
Hence, option(B) is correct.
From the given place value table, write the decimal number.
From the following place value table, write the decimal number:-
Find the value of x so that; (i) (34)2x+1=((34)3)3(ii) (25)3×(25)6=(25)3x(iii) (−15)20÷(−15)15=(−15)5x(iv) 116×(12)2=(12)3(x−2)